AI Hallucinations in AIED and Their Impact on Students' Intentions to Behave Honestly: A PLS-SEM Analysis of JTIK UNM Students
Keywords:
Algorithmic Bias, Artificial Intelligence in Education, Digital Literacy, Honest Behaviour, TransparencyAbstract
Artificial Intelligence in Education (AIED) is increasingly used to support learning efficiency, personalization, and academic productivity. However, issues such as AI hallucination, algorithmic bias, limited system Transparency, and variations in students’ Digital Literacy present ethical risks that may undermine academic integrity. These challenges indicate a gap between the ideal function of AI as a learning assistant and its practical use, which remains prone to plagiarism and misuse. This study aims to analyze how students’ perceptions of algorithmic bias, Transparency in AI systems, and Digital Literacy influence their Honest Behavior when using AI for academic purposes. A quantitative research method was employed using a survey design, and data were analyzed through Partial Least Squares Structural Equation Modeling to empirically examine the relationships among variables. The results show that algorithmic bias, Transparency, and Digital Literacy each have a positive effect on honest behavior, with Digital Literacy emerging as the strongest predictor. These findings suggest that students with better digital skills and awareness of AI mechanisms are more capable of using AI responsibly and ethically. This study concludes that higher education institutions need to strengthen policies related to ethical AI use and enhance students’ Digital Literacy to foster an academically honest environment. The study contributes to the development of ethical behavior frameworks in the AIED context and provides considerations for institutions to improve integrity in AI-assisted learning.
Downloads
References
[1] S. Budiyono, P. Azhari, and M. A. B. Pamungkas, “Problem Penggunaan AI (Artificial Intelligence) dalam Bidang Pendidikan,” Al-DYAS, vol. 3, no. 2, pp. 660–669, May 2024, doi: 10.58578/aldyas.v3i2.2935.
[2] R. Setiawan and N. Sukmana, “Kalam Cendekia: Jurnal Ilmiah Kependidikan Kebijakan Penggunaan Teknologi Artificial Intelligence (AI) dalam Pembelajaran di Sekolah Dasar,” Kalam Cendekia: Jurnal Ilmiah Kependidikan, vol. 13, pp. 1137–1143, 2025, doi: 10.20961/jkc.v13i2.102104.
[3] F. Aljamaan et al., “Reference Hallucination Score for Medical Artificial Intelligence Chatbots: Development and Usability Study,” JMIR Med Inform, vol. 12, 2024, doi: 10.2196/54345.
[4] A. M. Al-Zahrani, “Unveiling the shadows: Beyond the hype of AI in education,” Heliyon, vol. 10, no. 9, May 2024, doi: 10.1016/j.heliyon.2024.e30696.
[5] A. Supriyono, A. Djoko Lesmono, T. Prihandono, D. dan Tantangan Pemanfaatan ChatGPT dalam Pembelajaran pada Kurikulum Merdeka, T. Literatur Sistematis Jurnal Pendidikan dan Kebudayaan Vol, and A. Supriyono Albertus Djoko Lesmono, “Dampak dan Tantangan Pemanfaatan ChatGPT dalam Pembelajaran pada Kurikulum Merdeka: Tinjauan Literatur Sistematis The Impact and Challenges of Utilizing ChatGPT in Learning within the Kurikulum: A Systematic Literature Review,” Jurnal Pendidikan dan Kebudayaan, vol. 9, no. 2, 2024, doi: 10.24832/jpnk.v9i2.5214.
[6] I. Ajzen, “The theory of planned behavior: Frequently asked questions,” Hum Behav Emerg Technol, vol. 2, no. 4, pp. 314–324, Oct. 2020, doi: 10.1002/hbe2.195.
[7] J. W. Creswell and J. D. Creswell, “Research Design Qualitative, Quantitative, and Mixed Methods Approaches Fifth Edition,” Sage Open, 2018.
[8] J. F. Hair, G. Tomas, M. Hult, C. M. Ringle, and M. Sarstedt, “A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM),” 2022. [Online]. Available: https://www.researchgate.net/publication/354331182
[9] M. S. Rahman, M. M. Sabbir, J. Zhang, I. H. Moral, and G. M. S. Hossain, “Examining students’ intention to use ChatGPT: Does trust matter?,” Australasian Journal of Educational Technology, vol. 39, no. 6, pp. 51–71, Dec. 2023, doi: 10.14742/ajet.8956.
[10] D. Aswan, “Hubungan antara literasi digital dan persepsi mahasiswa tentang etika penggunaan AI di kalangan akademik,” Jurnal Ilmiah Wahana Pendidikan, vol. 11, no. 6.D, pp. 283–294, 2025. [Online]. Available: https://jurnal.peneliti.net/index.php/JIWP/article/view/12159
[11] E. Anisa, M. Ulfa, and M. D. Anggriani, “Dampak penggunaan AI ChatGPT dalam pembelajaran di kalangan mahasiswa PGSD Universitas Riau,” ENTINAS: Jurnal Pendidikan dan Teknologi Pembelajaran, vol. 3, no. 2, pp. 46–54, 2025.
[12] I. Etikan and K. Bala, “Sampling and Sampling Methods,” Biom Biostat Int J, vol. 5, no. 6, May 2017, doi: 10.15406/bbij.2017.05.00149.
[13] N. Saputri and S. Surawan, “Interaksi Mahasiswa Dengan Artificial Intelligence dan Implikasinya Terhadap Akhlak Digital: Tinjauan Psikologi Pendidikan Islam,” Al-Zayn : Jurnal Ilmu Sosial & Hukum, vol. 3, no. 3, pp. 1606–1616, Jun. 2025, doi: 10.61104/alz.v3i3.1467.
[14] L. Yu and Y. Li, “Artificial Intelligence Decision-Making Transparency and Employees’ Trust: The Parallel Multiple Mediating Effect of Effectiveness and Discomfort,” Behavioral Sciences, vol. 12, no. 5, May 2022, doi: 10.3390/bs12050127.
[15] J. Hansson and E. Hubendick, “Public perceptions of transparency in AI-driven decision-making in Sweden-A quantitative analysis of Swedish citizens’ views on ethical concerns in public sector AI,” 2025.
[16] S. Muammar, P. Maheshwari, and S. Atalla, “An Integrated Theoretical Model for Assessing Digital Literacy’s Impact on Academic Performance: A Case Study Using PLS-SEM,” IEEE Access, vol. 13, pp. 101624–101638, 2025, doi: 10.1109/ACCESS.2025.3578107.
[17] E. Avinç and F. Doğan, “Digital literacy scale: Validity and reliability study with the rasch model,” Educ Inf Technol (Dordr), vol. 29, no. 17, pp. 22895–22941, Dec. 2024, doi: 10.1007/s10639-024-12662-7.
[18] M. M. Mohammadi, A. Naghibzadeh, H. Mosafer, and M. Mohammadi, “Measuring honesty in nursing: scale development and validation,” BMC Nurs, vol. 24, no. 1, Dec. 2025, doi: 10.1186/s12912-025-03163-0.
[19] J. Benitez, J. Henseler, A. Castillo, and F. Schuberth, “How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research,” Information and Management, vol. 57, no. 2, Mar. 2020, doi: 10.1016/j.im.2019.05.003.
[20] J. F. Hair and M. A. Sabol, “Partial Least Squares Structural Equation Modeling (PLS-SEM): A Rapidly Emerging SEM Alternative,” in International Encyclopedia of Statistical Science, Springer Berlin Heidelberg, 2025, pp. 1880–1882. doi: 10.1007/978-3-662-69359-9_466.
[21] Y. Haji-Othman and M. S. S. Yusuff, “Assessing Reliability and Validity of Attitude Construct Using Partial Least Squares Structural Equation Modeling (PLS-SEM),” International Journal of Academic Research in Business and Social Sciences, vol. 12, no. 5, May 2022, doi: 10.6007/ijarbss/v12-i5/13289.
[22] S. M. Rasoolimanesh, “Discriminant validity assessment in PLS-SEM: A comprehensive composite-based approach,” 2022. [Online]. Available: https://www.scriptwarp.com,
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Desitha Cahya, Putri Ramdani, Annajmi Rauf, Andi Baso Kaswar, M Miftach Fakhri (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.