Pengembangan Fitur Absensi Pengenalan Wajah Menggunakan Model Facenet pada Aplikasi Buku Tamu Desa
DOI:
https://doi.org/10.61220/scientist.v3i1.20252Keywords:
Face Recognition, FaceNet, Cosine Similarity, Attendance, React NativeAbstract
The FaceNet model is one of the deep learning-based face recognition methods capable of transforming facial images into feature vectors (embedding) that represent the unique identity of each individual. In previous studies, this model is often combined with classification methods such as Support Vector Machine (SVM) or K-Nearest Neighbor (K-NN). Although accurate, these approaches require high computation and complex inference processes, making them less suitable for applications that require fast response and efficiency, such as real-time attendance systems. This research proposes an alternative approach using cosine similarity to compare similarity between face vectors. Cosine similarity measures the similarity of two vectors based on the angle between them, with values ranging from 0 (not similar) to 1 (identical). The system was developed by combining FaceNet and cosine similarity models, without any additional classification. Test results showed that faces registered in the system produced cosine similarity values between 0.83 and 0.96 (closer to 1 indicates a high match), with an average of 0.90, while unregistered faces had values between 0.42 and 0.67, with an average of 0.53. By setting the threshold at 0.7, the system successfully differentiated between recognized and unrecognized faces with 100% accuracy on 30 respondents. This approach significantly reduces the computational burden, enables implementation on devices with limited specifications, and provides a practical and accurate solution for face recognition-based digital attendance systems.
Downloads
References
A. A. Fauzi et al., Pemanfaatan Teknologi Informasi di Berbagai Sektor pada Masa Society 5.0 Penulis. Jambi: PT. Sonpedia Publishing Indonesia, 2023. [Online]. Available: www.sonpedia.com
D. Andreswari, F. Farady Coastera, and M. Yusa, “Pemanfaatan Teknologi Informasi dan Komunikasi (TIK) yang Maksimal untuk Mendukung Pelaksanaan Tugas Administrasi Pemerintahan di Kelurahan Sawah Lebar Baru,” 2023. [Online]. Available: www.ejournal.unib.ac.id/index.php/abdireksa
Abdulloh, “Implementasi Sistem Informasi Manajemen dalam Meningkatkan Pelayanan Publik,” 2020.
S. Pramesti and P. T. Febrianto, “Implementasi Sistem Absensi Digital untuk Meningkatkan Efisiensi Pencatatan Kehadiran Guru di Sekolah Dasar,” Apr. 2024.
A. P. Prima Suhendri and H. N. Huda, “Implementasi Mobile Attendance System Dengan Metode Face Recognition,” vol. 2, no. 6, pp. 1013–1022, 2024.
Alfiana, L. Sri Mulatsih, S. Kakaly, R. Rais, L. Husnita, and Asfahani, “Pemberdayaan Masyarakat dalam Mewujudkan Desa Edukasi Digital di Era Teknologi,” Communnity Development Journal, vol. 4, pp. 7113–7120, 2023.
T. Abdillah, S. Siwa, R. T. R. L Bau, and S. Yunarti, “Aplikasi Absensi Siswa menggunakan Face API Recognition,” Digital Transformation Technology, vol. 4, no. 1, pp. 497–503, Jul. 2024, doi: 10.47709/digitech.v4i1.4342.
E. Tohidi, R. Fahrezi Maulana, E. Wahyudin, and Kaslani, “Penerapan Aplikasi Absensi Face Recognition dengan Opencv menggunakan Algoritma Haarcascade Classifier di SMK Muthia Harapan Cicalengka,” Mar. 2024.
Kavita and R. S. Chhillar, “Face Recognition Challenges and Solutions using Machine Learning,” Oct. 2022. [Online]. Available: https://www.researchgate.net/publication/374738467.
F. Cahyono, “Pengenalan Wajah menggunakan Model Facenet untuk Presensi Pegawai,” 2020.
B. Hartanto, B. W. Yudanto, and S. Informasi, “Implementasi Google ML Kit untuk Liveness Detection dalam Sistem Face Recognition : Analisis Kinerja dan Keamanan pada Aplikasi Mobile,” vol. 4, no. 1, pp. 32–38, 2025.
Downloads
Published
Citation
Issue
Section
License
Copyright (c) 2025 Muhammad Ilham, Muhammad Yusuf Mappeasse, Abd Rahman Patta (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.