Clustering Tweets Data on Twitter Social Media using K-Means Method
DOI:
https://doi.org/10.61220/scientist.v1i2.20232Keywords:
clustering, evaluation, k-means, social media, twitterAbstract
Twitter, as a popular social media with millions to billions of global users, stores a wide variety of information. This study focuses on the use of Text Mining to analyze tweet content through the application of clustering techniques, specifically using the K-Means algorithm. The implementation process involves several stages of text processing, including casefolding, tokenizing, stopword removal, and stemming. Feature extraction is performed to provide input for the K-Means algorithm. The clustering evaluation uses the Silhouette coefficient method. The test results show that different K values result in a variation of the silhouette value. In a particular test scenario, a value of K=2 resulted in a silhouette of 0.5000421, K=5 had a value of 0.0501051, and K=9 had a value of 0.501893. From these values, the data structure of the dataset taken can be categorized as medium structure, because the silhouette value is in the range of 0.5 to 0.7. These results show that cluster quality is influenced by the K value, with the silhouette value being the main determinant.
Downloads
References
D. Anggoro and A. W. Hidayat, “Rancang Bangun Sistem Informasi Perpustakaan Sekolah Berbasis Web Guna Meningkatkan Efektivitas Layanan Pustakawan,” Edumatic J. Pendidik. Inform., 2020, doi: 10.29408/edumatic.v4i1.2130.
J. Fernando, I. R. I. Astutik, and H. Setiawan, “RANCANG BANGUN APLIKASI SISTEM INFORMASI CARWASH &Amp; AUTOCARE BERBASIS ANDROID PADA MAHKOTA MOTOR JAYA MAKMUR,” J. Teknoinfo, 2023, doi: 10.33365/jti.v17i1.2294.
M. F. Syawalludin and M. E. A. Rivan, “Sistem Informasi Perpustakaan Berbasis Website Di Sekolah DasarNegeri 240 Palembang,” MDP-Sc, 2023, doi: 10.35957/mdp-sc.v2i1.4476.
S. DwiDara, A. Y. Rindarwati, R. N. Fadillah, and Y. Iskandar, “Evaluasi Sistem Penyimpanan Obat Berdasarkan Standar Pelayanan Kefarmasian Pada Salah Satu Apotek Di Kota Bandung,” J. Pharm. Sci., 2023, doi: 10.36490/journal-jps.com.v6i1.67.
E. S. Dasopang, A. Utami, F. Hasanah, D. N. Siahaan, and N. S. Harefa, “Profil Penyimpanan Obat LASA (Look Alike Sound Alike) Pada Beberapa Apotek Di Kota Medan,” Jfionline | Print Issn 1412-1107 | E-Issn 2355-696x, 2022, doi: 10.35617/jfionline.v14i2.97.
R. E. G. Rahayu and P. Marup, “Rancang Bangun Sistem Informasi Pelayanan Administrasi Publik Terpadu Berbasis Web,” J. Algoritm., 2021, doi: 10.33364/algoritma/v.18-1.826.
Y. Septiana, W. Baswardono, and R. E. N. Awaludin, “Rancang Bangun Sistem Informasi Administrasi Klinik Berbasis Website Menggunakan Metode Extreme Programming,” J. Algoritm., 2022, doi: 10.33364/algoritma/v.19-2.1151.
S. Kosasi, “Pembuatan Sistem Informasi Geografis Berbasis Web Untuk Persebaran Lokasi Apotek,” Csrid (Computer Sci. Res. Its Dev. Journal), 2016, doi: 10.22303/csrid.8.2.2016.99-108.
I. Soraya, W. R. Adawiyah, and E. Sutrisna, “Pengujian Model Hot Fit Pada Sistem Informasi Manajemen Obat Di Instalasi Farmasi RSGMP Unsoed Purwokerto,” J. Ekon. Bisnis Dan Akunt., 2019, doi: 10.32424/jeba.v21i1.1261.
A. S. Wulandari and N. Ahmad, “Hubungan Faktor Sosiodemografi Terhadap Tingkat Pengetahuan Swamedikasi Di Beberapa Apotek Wilayah Purworejo,” Inpharnmed J. (Indonesian Pharm. Nat. Med. Journal), 2021, doi: 10.21927/inpharnmed.v4i1.1764.
Downloads
Published
Citation
Issue
Section
License
Copyright (c) 2023 Dewi Fatmarani Surianto (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.