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ABSTRACT 

In this paper we investigate the regularity properties of Schrödinger-type equations with the data in 
certain Morrey spaces. Under some assumptions, we obtain that if the data is not in certain Morrey 
space, then the solution is also not in certain Morrey spaces. Hence, if the data which acts on the system 
does not balance local regularity and global decay, then the solution does not either. 
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1.  Introduction 

Quantum mechanics stands as one of the most remarkable intellectual achievements of 
recent decades, significantly expanding the field of physics. This theory forms a 
foundational framework for explaining phenomena at the microscopic level, including 
the behavior of subatomic particles and the internal structure of matter. Within this 
context, partial differential equations—such as the Schrödinger and Klein-Gordon 
equations—play a vital role in analyzing the fundamental dynamics of quantum 
systems. A central focus in such studies is the investigation of the regularity properties 
of their solutions, which offer valuable insights into the stability and evolution of 
quantum states. The origins of quantum theory can be traced back to Max Planck’s 
groundbreaking work on blackbody radiation in the early 20th century [1], for which he 
was later awarded the Nobel Prize.  

We shall consider the Schrödinger-type Equations  

[𝑉𝛾(−Δ + 𝑉)−𝛽](𝑢) = 𝑓    (1) 

where 0 ≤ 𝛾 ≤ 𝛽 ≤ 1 and 

[𝑉𝛾∇(−Δ + 𝑉)−𝛽](𝑢) = 𝑓     (2) 

where 0 ≤ 𝛾 ≤
1

2
≤ 1, 𝛽 − 𝛾 ≥

1

2
, and 𝑉 is nonnegative potential belonging to the reverse 

Holder class 𝐵∞. The function 𝑓 is called data which describes external forces acting on 
the system. In this paper, we prefer to use the notion of forcing function. 

The Schrödinger equation governs the behavior of particles in quantum spaces, 

capturing complex dynamics that are central to quantum theory. Several recent studies 
such as those by Geng et al. [2], Hossein et al. [3], Ibrahim et al. [4], Ibrahim & Baleanu 
[5], Litu et al. [6], and Rafiq et al. [7] have contributed to a deeper understanding of this 
equation. Due to its intricate structure, finding explicit solutions for the function 𝑢 u is 
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often challenging. Nevertheless, mathematical analysis offers powerful tools for 
examining various qualitative properties of the solutions. 

In this study, we focus on a specific question: What happens to the behavior of the 
solution 𝑢 when the function 𝑓 in equations (1) and (2) lacks a balance between local 
regularity and global decay? In other words, we aim to investigate how the solution 
behaves when the function 𝑓 exhibits irregularities both at small (local) scales and at 
infinity (global scales), making it difficult to control or predict its influence on 𝑢. 

The concepts of local and global behavior can be effectively analyzed using the 
framework of Morrey spaces. These spaces were initially introduced by Charles 
Bradfield Morrey in 1938 as a tool for investigating the local properties of solutions to 
certain elliptic partial differential equations [8]. Morrey spaces are regarded as a 
generalization of Lebesgue spaces, offering a broader setting for capturing both local 
regularity and global integrability characteristics.  

Morrey spaces have been extensively utilized to examine the behavior of solutions to 
various partial differential equations through the application of operators studied in 
mathematical analysis, particularly in harmonic analysis. Commonly employed 
operators include the Hardy–Littlewood maximal operator, Riesz potential, Calderón–
Zygmund operators, and the Fourier transform. For a broader treatment of operator 
boundedness on these spaces, readers are referred to the works of Ramadana & 
Gunawan [9-10] and Samko [11]. 

In this study, we examine the solutions of equations where 𝑓 belongs to a Morrey space, 

focusing particularly on the regularity properties of the solutions. Our investigation is 
conducted within a broader framework, namely the generalized Morrey spaces. We 
establish the regularity of the solutions to Schrödinger equations (1) and (2) by 
employing analytical tools from mathematical analysis, specifically the fractional 
maximal operator 𝑀𝛼. We begin by proving the boundedness of this operator on 
generalized weighted Morrey spaces, and then apply the results to the equations under 
consideration. 

2.  Preliminaries: Some Definitions and Notations 

We write ℝ+ = (0, ∞). We shall use the Euclidean spaces ℝ𝑛 endowed by the usual 

metric and measure defined on it. For 𝑧 ∈ ℝ𝑛 and 𝑡 > 0, we denote by 𝐵(𝑧, 𝑡) the ball 
centered at 𝑧 with radius of 𝑡 > 0. Moreover, |𝐸| denotes the Lebesgue measure of the 
set 𝐸 ⊆ ℝ𝑛.  

For 1 < 𝑝 < ∞ and 𝜑: ℝ𝑛 × ℝ+ → ℝ+. Morrey spaces 𝐿𝜑
𝑝

 is a set of any locally integrable 

function 𝑓 ∈ 𝐿𝑞
𝑝

 such that the norm  

‖𝑓‖
𝐿𝑞

𝑝 = sup
𝑧∈ℝ𝑛,𝑡>0

1

𝜑(𝑧, 𝑟)

1

𝑡
𝑛

𝑝

(∫ |𝑓|𝑝

𝐵(𝑧,𝑡)

)

1

𝑝

≃ sup
𝑧∈ℝ𝑛,𝑡>0

1

𝜑(𝑧, 𝑟)

1

|𝐵(𝑧, 𝑟)|
1

𝑝

(∫ |𝑓|𝑝

𝐵(𝑧,𝑡)

)

1

𝑝

 

is finite. We say 𝑉 ∈ 𝐵∞ if there is a positive constant 𝐶 > 0 for which  

‖𝑉‖𝐿∞(𝐵) ≤ C
1

|𝐵|
∫ 𝑉(𝑧)

𝐵

𝑑𝑧 

for any ball 𝐵 in ℝ𝑛 [12]. We consider the two Schrödinger operators 𝐿1 and 𝐿2 where 

𝐿1(𝑢) = [𝑉𝛾(−Δ + 𝑉)−𝛽](𝑢) 

and  
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𝐿2(𝑢) = [𝑉𝛾∇(−Δ + 𝑉)−𝛽](𝑢). 

For those interested in exploring further developments and applications of Schrödinger 
operators, several recent studies provide valuable insights. Notably, the works of 
Akbulut et al. [13], Ambrosio [14], Dasgupta et al. [15], Dewan [16], and Fabris et al. [17] 
offer comprehensive discussions and analyses on various aspects of Schrödinger 
operators. These include theoretical advancements, new solution techniques, and 
applications in mathematical physics. Readers are encouraged to consult these 
references to gain a deeper understanding of the current research landscape and ongoing 
progress in this area of mathematical analysis. 
 
3.  Results and Discussion 

We denote 𝑆0
∞ by the set of any infinitely differentiable function on ℝ𝑛 with compact 

support. For any ball 𝐵, we denote 𝑙(𝐵) by the radius of 𝐵 and 𝑐(𝐵) denotes the center 

of 𝐵. Moreover, 𝐿𝑙𝑜𝑐
𝑝

 denotes the set of any functions 𝑓 such that 𝑓 ⋅ 𝒳𝐵 ∈ 𝐿𝑝 for all balls 

𝐵 on ℝ𝑛 where 𝒳𝐵 is the characteristic function of the ball 𝐵. 

We have the following useful theorems. The theorems provide the relation between the 

Schrödinger operator (𝐿1 and 𝐿2) and 𝑀𝛼 which is inspired us to use the method via 
boundedness operator 𝑀𝛼 to answer the question presented in the section 1.  
Theorem 1 [18].  Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤ 𝛽 ≤ 1. Then,  

|𝐿1𝑢| ≲ 𝑀𝛼𝑢, 𝑢 ∈ 𝑆0
∞ 

where 𝛼 = 2(𝛽 − 𝛾). 

Theorem 2 [18].  Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤
1

2
≤ 1, 𝛽 − 𝛾 ≥

1

2
. Then,  

|𝐿2𝑢| ≲ 𝑀𝛼𝑢, 𝑢 ∈ 𝑆0
∞ 

where 𝛼 = 2(𝛽 − 𝛾) − 1. 
The following theorem was proved by Ramadana & Gunawan [9]. 

Theorem 3. Let 1 ≤ 𝑝 < 𝑞 < ∞. Then,  

‖𝑀𝛼(𝑢)‖𝐿𝑞(𝐵) ≲ 𝑙(𝐵)
𝑛

𝑞 ∫ 𝑡
𝑛

𝑝
−

𝑛

𝑞

∞

𝑙(𝐵)

 ‖𝑢‖𝐿𝑝(𝐵(𝑐(𝐵),𝑡))

𝑑𝑡

𝑡
  

for any ball 𝐵 and 𝑢 ∈ 𝐿𝑙𝑜𝑐
𝑝

 . 

Theorem 4. Let 0 < 𝛼 < 𝑛, 1 ≤ 𝑝 < ∞ and  
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy 

∫ 𝜑1(𝑧, 𝑡)
𝑑𝑡

𝑡1−
𝛼

𝑛

 
∞

𝑟

≲ 𝜑2(𝑧, 𝑟), (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+. 

Then, 𝑀𝛼  is bounded from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
. 

In addition to the previous theorem, we establish an alternative condition that ensures the 
boundedness of the fractional maximal operator 𝑀𝛼 on generalized Morrey spaces. This result 
is formulated in the following theorem. 

Theorem 5. Let 0 < 𝛼 < 𝑛, 1 ≤ 𝑝 < ∞ and 
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy 

𝑠𝑢𝑝
𝑟<𝑡<∞

𝜑1(𝑧, 𝑡)𝑡
𝑛

𝑝
−

𝑛

𝑞 ≲ 𝜑2(𝑧, 𝑟), (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+. 

Then, 𝑀𝛼  is bounded from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
. 

Proof. We first find local estimate for the fractional maximal function 𝑀𝛼 which is similar 

to the local estimate stated in Theorem 3. To do so, we let 𝑢 ∈ 𝐿𝜑1

𝑝
, 𝑧 ∈ ℝ𝑛, and 𝑟 > 0. We 
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split the function 𝑢 to the form 𝑓 = 𝑢1 + 𝑢2 where 𝑢1 = 𝑢 ⋅ 𝒳𝐵(𝑧,2𝑟). It is well-know that 

𝑀𝛼 is bounded from 𝐿𝑝 to 𝐿𝑞, then 
‖𝑀𝛼(𝑢1)‖𝐿𝑞(𝐵(𝑎,𝑟)) ≤ ‖𝑀𝛼(𝑢1)‖𝐿𝑞 ≲ ‖𝑢1‖𝐿𝑝 = ‖𝑢‖𝐿𝑝(𝐵(𝑧,2𝑟)) 

Hence,  

‖𝑀𝛼(𝑢1)‖𝐿𝑞(𝐵(𝑧,𝑟)) ≲ ‖𝑢‖𝐿𝑝(𝐵(𝑧,2𝑟)) ≲ 𝑡
𝑛

𝑝 sup
𝑟<𝑡<∞

𝑡−
𝛼

𝑛‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)) . 

 
Next, we find the estimate for the norm of 𝑢2 over the ball 𝐵(𝑧, 𝑟) under 𝐿𝑞. We thus let 
𝑥 ∈ 𝐵(𝑧, 𝑟) and 𝑡 > 0. If 𝑦 ∈ 𝐵(𝑧, 𝑟) and 𝑦 ∈ 𝐵(𝑧, 2𝑟)𝑐, then we may obtain 𝑟 = 2𝑟 − 𝑟 ≤
|𝑦 − 𝑧| − |𝑧 − 𝑥| ≤ |𝑦 − 𝑥| < 𝑡 which implies the integral of |𝑢| over 𝐵(𝑥, 𝑡) ∩ 𝐵(𝑎, 2𝑟)𝑐 
equls 0 for 𝑡 ≤ 𝑟. Moreover, we also obtain that 𝐵(𝑥, 𝑡) ∩ 𝐵(𝑧, 2𝑟)𝑐 ⊆ 𝐵(𝑧, 2𝑡) for 𝑟 < 𝑡. In 
fact, |𝑦 − 𝑎| ≤ |𝑦 − 𝑥| + |𝑥 − 𝑎| ≤ 𝑡 + 𝑟 < 2𝑡. Hence, the following estimate hold by 
Holder inequality. 

𝑀𝛼(𝑢2)(𝑥) = max (sup
𝑡>𝑟

1

|𝐵(𝑥, 𝑡)|1−
𝛼

𝑛

∫ |𝑢2|
𝐵(𝑥,𝑡)

, sup
0<𝑡≤𝑟

1

|𝐵(𝑥, 𝑡)|1−
𝛼

𝑛

∫ |𝑢2|
𝐵(𝑥,𝑡)

) 

= sup
𝑡>𝑟

1

|𝐵(𝑥, 𝑡)|1−
𝛼

𝑛

∫ |𝑢2|
𝐵(𝑥,𝑡)

= sup
𝑡>𝑟

1

|𝐵(𝑥, 𝑡)|1−
𝛼

𝑛

∫ |𝑢|
𝐵(𝑥,𝑡)∩𝐵(𝑎,2𝑟)𝑐

 

≤ sup
𝑡>𝑟

1

|𝐵(𝑥, 𝑡)|1−
𝛼

𝑛

∫ |𝑢|
𝐵(𝑧,2𝑡)

≅ sup
𝑡>2𝑟

1

|𝐵(𝑧, 𝑡)|1−
𝛼

𝑛

∫ |𝑢|
𝐵(𝑧,𝑡)

 

≤ sup
𝑡>2𝑟

1

|𝐵(𝑧, 𝑡)|1−
𝛼

𝑛

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡))‖1‖
𝐿𝑝′

(𝐵(𝑧,𝑡))
≲ sup

𝑡>𝑟

1

|𝐵(𝑧, 𝑡)|
1

𝑞

‖𝑢‖𝐿𝑝,(𝐵(𝑧,𝑡)) . 

From the last inequality, we take the norm of 𝐿𝑞 on 𝑀𝛼(𝑢2) over the ball 𝐵(𝑧, 𝑟) to obtain 

‖𝑀𝑎(𝑢2)‖𝐿𝑞𝐵(𝑧,𝑟) ≲ 𝑟
𝑛

𝑞 sup
𝑡>2𝑟

1

𝑡
𝑛

𝑞

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)). 

We combine the obtained estimate for 𝑀𝛼(𝑢1) and 𝑀𝛼(𝑢2) and  then use the linearity 
properties of 𝑀𝛼 on Lebesgue spaces, 

‖𝑀𝑎(𝑢)‖𝐿𝑞𝐵(𝑧,𝑟) ≲ 𝑟
𝑛

𝑞 sup
𝑡>2𝑟

1

𝑡
𝑛

𝑞

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)). 

Hence, we use the definition of the norm of generalized Morrey spaces, 

‖𝑀𝛼(𝑢)‖
𝐿𝜑2

𝑝 = sup
𝑧∈ℝ𝑛,𝑟>0

1

𝜑2(𝑧, 𝑟)

1

𝑡
𝑛

𝑞

‖𝑀𝑎(𝑢)‖𝐿𝑞𝐵(𝑧,𝑟) 

≲ sup
𝑧∈ℝ𝑛,𝑟>0

1

𝜑2(𝑧, 𝑟)

1

𝑟
𝑛

𝑞

𝑟
𝑛

𝑞 sup
𝑡>𝑟

1

𝑡
𝑛

𝑞

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)) 

= sup
𝑧∈ℝ𝑛,𝑟>0

1

𝜑2(𝑧, 𝑟)
sup
𝑡>𝑟

1

𝑡
𝑛

𝑞

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)) 

= sup
𝑧∈ℝ𝑛,𝑟>0

1

𝜑2(𝑧, 𝑟)
sup
𝑡>𝑟

𝜑1(𝑧, 𝑡)

𝜑1(𝑧, 𝑡)

1

𝑡
𝑛

𝑞

‖𝑢‖𝐿𝑝(𝐵(𝑧,𝑡)) 

≤ ‖𝑢‖
𝐿𝜑1

𝑝 sup
𝑧∈ℝ𝑛,𝑟>0

1

𝜑2(𝑧, 𝑟)
sup
𝑡>𝑟

𝜑1(𝑧, 𝑡)
𝑡

𝑛

𝑝

𝑡
𝑛

𝑞

 

≲ ‖𝑢‖
𝐿𝜑1

𝑝 . 

This proves that 𝑀𝛼 is bounded from ℳ𝜑1

𝑝,𝑤𝑝

 to ℳ𝜑2

𝑞,𝑤𝑞

 ∎ 

Using these theorems, we have the following theorem which present the boundedness 
of Schrödinger operator on the Morrey spaces.  
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Theorem 6. Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤ 𝛽 ≤ 1. Let 𝛼 = 2(𝛽 − 𝛾) − 1, 1 ≤ 𝑝 < ∞, and 
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy one of the following conditions: 

1. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

∫ 𝜑1(𝑧, 𝑡)
𝑑𝑡

𝑡1−
𝛼

𝑛

 
∞

𝑟

≲ 𝜑2(𝑧, 𝑟). 

2. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

𝑠𝑢𝑝
𝑟<𝑡<∞

𝜑1(𝑧, 𝑡)𝑡
𝑛

𝑝
−

𝑛

𝑞 ≲ 𝜑2(𝑧, 𝑟),  

Then, 𝐿1  is bounded from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
. 

Proof. We note by Theorem 1, Theorem 4, and Theorem 5 that 
‖𝐿1(𝑢)‖

𝐿𝜑2

𝑞 ≲ ‖𝑀𝛼(𝑢)‖
𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝  

which prove the boundedness of 𝐿1  from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
 ∎ 

 

Theorem 7. Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤
1

2
≤ 1, 𝛽 − 𝛾 ≥

1

2
. Let 𝛼 = 2(𝛽 − 𝛾) − 1, 1 ≤ 𝑝 <

∞, and 
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy one of the following conditions: 

1. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

∫ 𝜑1(𝑧, 𝑡)
𝑑𝑡

𝑡1−
𝛼

𝑛

 
∞

𝑟

≲ 𝜑2(𝑧, 𝑟). 

2. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

𝑠𝑢𝑝
𝑟<𝑡<∞

𝜑1(𝑧, 𝑡)𝑡
𝑛

𝑝
−

𝑛

𝑞 ≲ 𝜑2(𝑧, 𝑟),  

Then, 𝐿2  is bounded from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
. 

Proof. We note by Theorem 2, Theorem 4, and Theorem 5 that 
‖𝐿1(𝑢)‖

𝐿𝜑2

𝑞 ≲ ‖𝑀𝛼(𝑢)‖
𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝  

which prove the boundedness of 𝐿1  from 𝐿𝜑1

𝑝
 to 𝐿𝜑2

𝑞
 ∎ 

Suppose the Schrödinger equation (1) and (2) again.The following two theorems  are our 
main results regarding regularity result for the solution of the equation. 

Theorem 8. Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤ 𝛽 ≤ 1. Let 𝛼 = 2(𝛽 − 𝛾) − 1, 1 ≤ 𝑝 < ∞, and 
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy one of the following conditions: 

1. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

∫ 𝜑1(𝑧, 𝑡)
𝑑𝑡

𝑡1−
𝛼

𝑛

 
∞

𝑟

≲ 𝜑2(𝑧, 𝑟). 

2. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

𝑠𝑢𝑝
𝑟<𝑡<∞

𝜑1(𝑧, 𝑡)𝑡
𝑛

𝑝
−

𝑛

𝑞 ≲ 𝜑2(𝑧, 𝑟),  

If 𝑢 is the solution of (1) and 𝑢 ∈ 𝐿𝜑1

𝑝,
, then ‖𝑓‖

𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝 . 

Proof. Suppose the equation (1) and 𝑢 ∈ 𝐿𝜑1

𝑝
 is the solution of the equation. By Theorem 

6, then  
‖𝑓‖

𝐿𝜑2

𝑞 = ‖𝐿1(𝑢)‖
𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝  

that proves the theorem ∎ 
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Theorem 9. Suppose 𝑉 ∈ 𝐵∞ and 0 ≤ 𝛾 ≤
1

2
≤ 1, 𝛽 − 𝛾 ≥

1

2
. Let 𝛼 = 2(𝛽 − 𝛾) − 1, 1 ≤ 𝑝 <

∞, and 
1

𝑞
=

1

𝑝
−

𝛼

𝑛
. Suppose the functions 𝜑1 and 𝜑2 satisfy one of the following conditions: 

1. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

∫ 𝜑1(𝑧, 𝑡)
𝑑𝑡

𝑡1−
𝛼

𝑛

 
∞

𝑟

≲ 𝜑2(𝑧, 𝑟). 

2. For (𝑧, 𝑟) ∈ ℝ𝑛 × ℝ+, 

𝑠𝑢𝑝
𝑟<𝑡<∞

𝜑1(𝑧, 𝑡)𝑡
𝑛

𝑝
−

𝑛

𝑞 ≲ 𝜑2(𝑧, 𝑟),  

If 𝑢 is the solution of (2) and 𝑢 ∈ 𝐿𝜑1

𝑝,
, then ‖𝑓‖

𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝 . 

Proof. Suppose the equation (2) and 𝑢 ∈ 𝐿𝜑1

𝑝
 is the solution of the equation. By Theorem 

7, then  
‖𝑓‖

𝐿𝜑2

𝑞 = ‖𝐿1(𝑢)‖
𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝  

that proves the theorem ∎ 

Generally, we obtain that ‖𝑓‖
𝐿𝜑2

𝑞 ≲ ‖𝑢‖
𝐿𝜑1

𝑝  with different value for the parameter in the 

equations. It means that if the solution 𝑢 in 𝐿𝜑1

𝑝
, the data 𝑓 is forced to be in the Morrey 

spaces 𝐿𝜑2

𝑞
. In the other words, if the data is not in certain Morrey space, then the solution 

𝑢 is not in certain Morrey spaces. Hence, if the data which acts on the system does not 
balance local regularity and global decay, then the solution 𝑢 does not either. This 
answers the research question. 

4.  Conclusion 

The solution of Schrödinger-type equation have relation with the data in the equation, 
namely if the data is not in a Morrey spaces, then the solution of the equation is also not 
in certain Morrey spaces.  
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