Metode Penentuan Perbaikan Noise Pada Data Musik Menggunakan Algoritma Least Mean Square

Authors

  • Satria Gunawan Zain Universitas Negeri Makassar Author
  • Edi Suhardi Rahman Universitas Negeri Makassar Author
  • Mardhatillah Universitas Negeri Makassar Author

DOI:

https://doi.org/10.61220/digitech.v1i1.20235

Keywords:

Algoritma Least Mean Square (LMS), Noise, sinyal musik

Abstract

Jenis penelitian ini menggunakan penelitian Eksperimen yaitu suatu penelitian yang di dalamnya ditemukan minimal satu variabel yang dimanipulasi untuk mempelajari hubungan sebab-akibat. Kebisingan tidak bisa dihindari dalam sistem komunikasi. Dalam beberapa kasus, noise dapat mengganggu sinyal. Penelitian ini dilakukan untuk melihat performa Adaptiv Filter menggunakan Algoritma least mean square (LMS) dalam menghilangkan noise. Hasil dari penelitian ini adalah didapatkan sebuah metode dalam menghilangkan atau mengurangi bobot noise pada data musik tari remo. Kemampuan filter dilihat dari nilai Mean Square Error (MSE)  dan Nilai Signal to Noise Rasio (SNR) yang dihasilkan dari percobaan dan pengujian simulai penghapusan noise. Penelitian ini  melibatkan 15 orang responden yang dianggap mampu membedakan suara sinyal musik sebelum difilter dan suara musik setelah difilter. Sebanyak 13 responden menyimpulkan bahwa suara sinyal hasil filter lebih baik daripada suara sinyal sebelum difilter. Dilihat dari grafik simulasi perbaikan noise pada tampiran GUI, dimana sinyal  gabungan antara sinyal asli dan noise setelah dilakukan pemfilteran grafiknya kembali menyerupai sinyal asli sebelum digabungkan dengan noise, sehingga dapat disimpulkan hasil dari penelitian ini bahwa Algoritma least mean square (LMS) efektif untuk menghilangkan noise.

References

[1] P. R. Ziemer and W. H. Tranter, Principles of Communication Systems Engineering, 2nd ed. New York, NY, USA: McGraw-Hill, 2018.

[2] J. G. Proakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th ed. Upper Saddle River, NJ, USA: Pearson, 2007.

[3] D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed. Upper Saddle River, NJ, USA: Pearson, 2020.

[4] D. H. Staelin and S. L. Marple, "Sampling and quantization in digital signal processing," IEEE Trans. Signal Processing, vol. 48, no. 6, pp. 1745-1755, Jun. 2000.

[5] R. K. Gupta and S. M. L. Harshe, "Music recognition and classification in robotics," IEEE Trans. Robot. Autom., vol. 12, no. 3, pp. 223-230, Jul. 2019.

[6] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York, NY, USA: Springer, 2006.

[7] M. H. Hayes, Statistical Digital Signal Processing and Modeling, New York, NY, USA: John Wiley & Sons, 1996.

[8] A. K. Jain, Fundamentals of Digital Signal Processing, Englewood Cliffs, NJ, USA: Prentice Hall, 2011.

[9] S. Haykin, Adaptive Filter Theory, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2014.

[10] M. T. Rojas and J. G. Orrego, "A novel adaptive filter for signal enhancement," IEEE Trans. Signal Processing, vol. 62, no. 10, pp. 2674-2682, Oct. 2014.

[11] L. Martinez, "Design of adaptive filters for noise suppression in audio systems," IEEE Trans. Audio, Speech, Lang. Processing, vol. 19, no. 4, pp. 789-797, Apr. 2011.

[12] D. S. H. Lee, "Noise filtering techniques for audio applications," IEEE Trans. Audio Eng., vol. 57, no. 2, pp. 324-332, Feb. 2009.

[13] M. L. Goh, "Implementing noise reduction algorithms for audio," IEEE Trans. Signal Processing, vol. 52, no. 9, pp. 2953-2961, Sep. 2004.

[14] F. P. S. P. Rojas and T. N. Martinez, "Adaptive filter applications in speech processing," IEEE Trans. Speech and Audio Processing, vol. 11, no. 5, pp. 433-441, May 2003.

[15] R. A. Kennedy and J. S. McClellan, "Filtering techniques for audio signal enhancement," IEEE Trans. Audio, Speech, Lang. Processing, vol. 16, no. 3, pp. 188-195, Mar. 2010.

[16] P. R. Ziemer and W. H. Tranter, Principles of Communication Systems Engineering, 2nd ed. New York, NY, USA: McGraw-Hill, 2018.

[17] J. G. Proakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th ed. Upper Saddle River, NJ, USA: Pearson, 2007.

[18] D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed. Upper Saddle River, NJ, USA: Pearson, 2020.

[19] D. H. Staelin and S. L. Marple, "Sampling and quantization in digital signal processing," IEEE Trans. Signal Processing, vol. 48, no. 6, pp. 1745-1755, Jun. 2000.

[20] R. K. Gupta and S. M. L. Harshe, "Music recognition and classification in robotics," IEEE Trans. Robot. Autom., vol. 12, no. 3, pp. 223-230, Jul. 2019.

[21] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York, NY, USA: Springer, 2006.

[22] M. T. Rojas and J. G. Orrego, "A novel adaptive filter for signal enhancement," IEEE Trans. Signal Processing, vol. 62, no. 10, pp. 2674-2682, Oct. 2014.

[23] L. Martinez, "Design of adaptive filters for noise suppression in audio systems," IEEE Trans. Audio, Speech, Lang. Processing, vol. 19, no. 4, pp. 789-797, Apr. 2011.

Downloads

Published

2023-07-29

How to Cite

Metode Penentuan Perbaikan Noise Pada Data Musik Menggunakan Algoritma Least Mean Square. (2023). Journal of Digital Technology and Computer Science, 1(1), 38-48. https://doi.org/10.61220/digitech.v1i1.20235